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Abstract 

 

The level of price elasticity for electricity service has always been a subject rife with 

controversy.  Estimates of price elasticity in this industry have varied widely, and little if any 

consensus exists on what the true level of price elasticity is.  This lack of consensus is evident in 

regulatory filings involving rate increases, where price elasticity is generally ignored as a factor 

influencing future sales and revenues after the rate increases occur.  Complicating the issue 

further is the question of exactly what price (if any) electricity customers are responding to: the 

total bill, the marginal (per kWh) rate, or some combination thereof.  And of course the answer 

to this question will be affected by the existence of any customer-facing programs that make 

consumers more aware of and/or provide incentives to respond to time-varying electricity prices. 

 

This paper examines the issue of price elasticity among electricity consumers.  After 

citing the diverse results obtained in measuring price elasticity, it describes the alternative – and 

not necessarily mutually exclusive – ways that customers are reacting to price, and reviews the 

evidence that weighs the relative importance of each, and the factors influencing these weights. 

 

Building upon the results of this examination, this paper proposes a new approach to rate 

design which explicitly takes into account the impacts of price elasticity and the mechanisms by 

which price elasticity affects electricity usage.  Two explicit objectives for rate design are 

identified – revenue recovery and load shaping – and a process is described for effectively 

applying the typical features of an electricity rate (customer charge, energy charge, demand 

charge) in the service of these objectives.  The paper concludes with a discussion of the 

difference between the “ideal” proposed approach and the reality of current rate design, and how 

to best adapt current rate designs to benefit from the insights that have been presented.  

 

Background 

 

Accurate forecasts of future electricity demand have always been critical to providing 

electricity in an efficient and reliable manner.  This is clearly evident in the need to meet hourly 

obligations of electricity through the effective dispatch of available generation, but it is also true 

over a longer time horizon, as planners decide on when new power plants will be required for 

their system, and what the production capacity of these new generators should be.  The losses 

associated with incorrect long-term forecasts can be devastating, as evidenced in the 1980s, 

when many electric providers found that they had overbuilt new generation capacity, due to 

long-term forecasts done during the prior decade which predicted that electricity demand growth 

would continue at the high annual rates that had been seen up to that time.  The consequences of 

adding excess generation capacity (much of this was expensive nuclear power in the 1980s) was 

that electric utilities faced resistance from their local regulatory commissions to pass the costs of 

the new generation onto their customers, on the grounds that the excess capacity was not “used 

and useful”, and therefore not cost-justified.  Many utilities were forced to take write-offs 



totaling hundreds of millions of dollars, and in some cases expensive plants that were nearly 

completed had to be dismantled, at a substantial incremental cost that also could not be passed on 

to consumers.  Many of the events of the 1970s which had contributed to reduced electricity 

demand growth (such as the recessions brought on by the OPEC price hikes and Iranian 

revolution, and the high energy prices and inflation that accompanied these) could not have been 

foreseen by utility planners early in that decade, but the forecast models that were used at that 

time were often quite basic in design, and could not have anticipated changes in growth due to 

falling income or rising energy prices, anyway. 

 

As the presence of distributed energy resources in electricity systems continues to grow, 

this will only heighten the need for more sophisticated models, which will have to account for 

the behavior of customers who have easier access to real-time price information and a greater 

capability to modify their consumption patterns in response to this information.  A growing 

number of customers will even have the ability to choose between being net consumers or net 

providers of electricity, based upon current electricity prices.  Forecasting models will have to be 

increasingly attuned to the impacts of prices on demand for electricity, which is termed price 

elasticity. 

 

Elasticity is formally defined as the ratio of the change in usage or consumption to the 

change in some causative factor – generally price or income.  Hence, the price elasticity () of 

demand represents the relative impact of changes in price on changes in demand.  Since it can be 

assumed that increases in price will cause demand to decrease, and vice versa, price elasticity 

will be negative.  (By contrast, since increases in income will generally result in increases in 

electricity demand, the elasticity of income can be expected to be positive.)    

 

While demand forecasting has come a long way since the 1970s, and many if not most 

models used by utility planners and energy analysts have incorporated the impact of price 

response on demand, the estimates of this impact, as reported in measurements published in 

academic and trade journals, vary over an extremely wide range.  An early survey of twenty-five 

studies in which residential long-term price elasticity of demand was estimated (Bohi, 1981) 

found that these estimates ranged from -2.1 to -0.45.  And a meta-analysis (Espey, 2004) of 

thirty-six studies published from 1971-2000 reported an even wider range in estimated long-run 

residential price elasticities of from -2.25 to -0.04.  A more recent survey of published literature 

by Paul, Myers, and Palmer (2009), while finding a relatively tight range in short-run residential 

price elasticity of -0.35 to -0.2, also reported a wide range in long-run residential price 

elasticities of -0.98 to -0.32, although not as wide as those reported in the earlier papers.  But 

extreme ranges can even appear within a single study: the RAND Corporation published a report 

(Bernstein and Griffin, 2005) on its own estimates of price elasticities which included a national 

estimate of long-run residential price elasticity of -0.32, regional estimates which ranged from     

-0.62 to -0.06, and state-level estimates which ranged from -0.999 to +0.666.  Hence, there is no 

uniform standard measure of price elasticity for the industry.  This disparity could be the result 

of one or more of the following causes: 1) actual elasticities vary significantly by location, 2) 

they change over time, and 3) their actual estimation is extremely contingent upon the method of 

estimation chosen. 

 



Clearly, price elasticity will also vary based upon the type of electricity customer served, 

with, for example, larger industrial customers probably being more sensitive to price than 

smaller residential and commercial customers.  But, as will be discussed below, it is not 

unreasonable to expect that price-responsive behavior will be different at different times of the 

year, and – if not now than at some future time – at different times of the week, and even 

different times of the day.  Based on the summaries described above, there has been little 

consensus on what the price sensitivity of electricity customers is.  If variation in price sensitivity 

does increase along other dimensions, there seems to be little hope of establishing a better 

consensus in the future.  On the other hand, a more explicit acknowledgment and recognition of 

the factors responsible for this variation might make the science of estimating electricity 

consumer price elasticity a more practical and useful one.  

 

That these estimates matter can be easily illustrated.  Consider an electric utility that has 

been granted an increase in revenue requirements (RR) by its regulatory commission, and is 

planning to increase rates (P) to recover this greater amount.  Clearly, the increase in revenue 

requirements (RR) will be directly proportional to the increase in rates (P), and is generally 

assumed when calculating the new level of revenue requirements.  But what is often ignored is 

the impact of the rate increase upon consumption, which will be equal to the change in price 

multiplied by the price elasticity.  The net relative change in revenue requirements will be 

approximately equal to the sum of these two changes: 

 

RR  P + (P x ) 

  P (1+ ). 

 

Hence, to achieve a certain targeted increase in revenue requirements, more than a proportional 

increase in price will be required.  In fact, the necessary price change, P, must be: 

 

  P   RR / (1+ ). 

 

The implications of this could be very significant.  For example, for customers with a moderate 

price elasticity of -0.5, a rate increase of 10% will only produce an increase in revenue from 

these customers of about 5%, and for customers with a relatively high price elasticity of -0.9, the 

same increase will result in a revenue increase of only 1%!  Either ignoring or grossly 

misestimating the impact of price elasticity could have potentially catastrophic consequences.  

The following section will illustrate some common approaches to get at this estimate. 

 

Four Simple Estimation Methods and Results 

 

The simplest approach to modeling the impact of elasticity is to use an ordinary least 

squares (OLS) linear regression model of the form: 

 

Et = B0 + B1Pt + B2Yt +  t, 

 

where Et in this example represents electricity usage in period t, Pt represents the price of 

electricity usage in period t, Yt represents the electricity consumer’s income in period t, and  t is 

an error term.  The coefficient B0 can be interpreted as the level of electricity usage before price 



and income effects, B1 as the effect on this usage by the price, and B2 as the effect on this usage 

by the level of the electricity consumer’s income.   

 

 The simplicity of the basic OLS model actually leads to some complications when 

computing elasticities.  Because the model is linear, the relative impact of a change in any of the 

variables will vary with the magnitude of both the independent variable (e.g., price) and the 

response variable (in this case, electricity sales).  This means that, rather than being a single 

number, elasticity will depend upon both the level of the response variable and the level of the 

independent variable corresponding to the elasticity measurement.  The formulas for elasticity 

for the above equation would be as follows: 

 

Price elasticity = B1(Pt/Et), 

Income elasticity = B2(Pt/Yt). 

 

There is a second complication with the basic OLS model, and this is that additional variables 

would have to be added to measure long-term elasticity effects, which could differ significantly 

from the immediate impacts.  The question, when adding these variables, is what the length 

should be of the time lag to be used.  One common approach is to use a twelve-month lag of each 

variable, as follows: 

 

 Et = B0 + B1Pt + B2Yt + B3Pt-12 + B4Yt-12 + t, 

 

The questions of lags, however, is not simply limited to measuring long-term effects.  There is 

often a debate, for example, about whether current period electricity usage will really be an 

effect of current period price, since customers do not see how much they are presently paying for 

electricity until they receive their next monthly electricity bill.  If the time period denoted by t 

corresponds to a particular month, some would contend that for the price variable at least, the 

equation should be modified as follows: 

 

 Et = B0 + B1Pt-1 + B2Yt + B3Pt-13 + B4Yt-12 + t, 

 

(Note that the twelve-month lag for the price variable has been adjusted to t-13).  Such questions 

involving what time period to use for the short-term variables as well as for the long-term lagged 

variables are generally resolved by linear regression analyses with alternative lags, and seeing 

which analysis best explains the empirical observations. 

 

The simple OLS model can be modified to enable a more direct measure of elasticity, and 

one which is not dependent on the magnitude of the variables, by using logarithmic 

transformations of the variables in the equation: 

 

log(Et) = B0 + B1log(Pt) + B2log(Yt) +  t. 

 

With this equation, B1 becomes the single measure of price elasticity, and B2 that of income 

elasticity.  The elasticity measures are invariant in this case because an underlying assumption of 

this equation is that relative changes in electricity usage are proportional to relative changes in 

price and income.  For example, if B1 were estimated to be -0.2, then this would mean that a 1% 



increase in price would result in an 0.2% decrease in electricity usage – which is precisely how 

price elasticity is defined.  Price elasticity as measured by B1 will be the same regardless of the 

level of electricity usage or price, and similarly the income elasticity as measured by B2 will not 

vary with the level of electricity usage or income. 

 

Another common method of estimating the impacts of price and other factors on 

consumption incorporates the assumption that changes in these factors impact consumption 

gradually over time.  Rather than using discrete long-term and short-term variables, the model 

assumes a distributed lag effect over an extended period of time.  The partial adjustment model 

assumes an infinite time horizon, and while this seems unrealistic, the model also incorporates 

the assumption that variable impacts decay with each successive time period, asymptotically 

going to zero at infinity, and generally being negligible even after a relatively short time horizon.  

The partial adjustment model simply adds, to the other independent variables in the equation, a 

one-period lag of the dependent variable.  A consumption model of this type measuring the 

impact of price would be of the following form (excluding the error term): 

 

Et = B0 + B1Pt + B2Et-1 

     = B0 + B1Pt + B2(B0 + B1Pt-1 + B2Et-2)  

     = B0 + B1Pt + B2B0 + B2B1Pt-1 + B2
2(B0 + B1Pt-2 + B2Et-3) 

     =  …, 

which implies that for any sustained unit change in the variable P, the long-term impact will be: 

 

     = (1 + B2 + B2
2 + B2

3 + … B2
∞) B1P 

     = [1/(1- B2)] B1P 

 

The model then lends itself to a straightforward interpretation of the coefficients.  In the above 

example, B1 is measuring the short-term impact of a price change, while [1/(1- B2)] B1 is 

measuring the long-term impact of a sustained change of that magnitude.  A limitation of the 

model is that if more than one independent variable is used, the the ratio of long-term to short-

term impacts – 1/(1- B2) – will be the same for all variables.   

 

This model retains the same limitation as the simple OLS model, in that price elasticity 

varies with the magnitude of the usage and price variables.  But as with the simple OLS model, 

logarithmic transformation of the variables in the partial adjustment model will enable a 

measurement of elasticity from direct inspection of the coefficients, with B1 corresponding to 

short-term price elasticity and [1/(1- B2)] B1 corresponding to long-term price elasticity. 

 

The Problem with Elasticity, Part I: Short Term vs. Long Term 

 

A fundamental issue with all forms of elasticity is the duration of the effect and/or how 

this effect changes over time.  As discussed above, there will generally be a short-term response 

to a change in price, income, etc., but this may be significantly different in magnitude from the 

longer-term reaction to the change.  In some cases, the immediate response will be muted, but 

will grow over time as the consumer makes more lasting adjustments to the change.  In other 

cases, a sharp immediate response may diminish and even disappear as the consumer grows to 

accept the change.  In the electricity industry, the distinction between short-term responses to 



price changes and longer-term or permanent responses to these changes is of critical importance.  

While both may affect the load shape of electricity consumption, it is only the long-term price 

response that will tangibly impact the amount of revenue that is being collected for electricity 

service.  Any projections of future revenue from electricity sales, and especially those that have 

been prepared to model requested or expected changes in electricity rates (e.g., as part of a rate 

case), should adjust changes in revenue in accordance with the expected impact of the rate 

changes on electricity consumption due to price elasticity. 

 

Both long-term and short-term price elasticity could come into play in determining the 

hourly and seasonal electricity usage of consumers.  A general rate increase – because it might 

cause consumers to reduce certain electricity applications deemed less vital than others – could 

change the load shape of demand as consumers make permanent changes in their relative usage 

of different applications.  Changes in rate design – for example the introduction or increase of a 

demand charge – will also have an effect upon load shape due to long-term price elasticity.  But 

if electricity rates have hourly or seasonal components, then even short-term price elasticity 

could affect demand patterns as consumers either curtail or shift load usage in response to hourly 

or seasonal rate changes. 

 

Fortunately, most academic studies of price responsive behavior include estimates of both 

long-run and short-run price elasticity.  When applied properly, both sets of estimates can be 

utilized to develop a complete picture of how price is influencing consumer demand for 

electricity: in terms of both total consumption and patterns of electricity usage. 

 

The Problem with Elasticity, Part II: Different Applications Have Different Elasticities 

 

A discussion of the price elasticity of electricity would be different than, for example, 

that of gasoline, or coffee, or most commodities, because electricity is actually enabling the 

usage of a variety of different activities and applications.  The willingness of a customer to 

curtail any of these activities or applications in the wake of an electricity price increase will vary 

– sometimes significantly – with each of them, and this in turn will affect how much electricity 

usage will be reduced, and when (i.e., in terms of the time of day, time of week, and time of 

year) these reductions will occur. 

 

While there are of course a large number of diverse applications for electricity, 

particularly in the typical household (e.g., washer and dryer, dishwasher, computer, television, 

lights air conditioning), these can be grouped into three general categories: space heating, space 

cooling, and non-weather-sensitive appliances.  Nationwide, on average, 25% of residential 

electricity usage is for space heating, 28% for space cooling, and 48% for all other, non-weather-

related applications.  These first two categories exhibit very predictable and distinctive seasonal 

usage patterns, with space cooling peaking in the summer, virtually non-existent in the winter, 

and greatly attenuated in the shoulder months, while space heating follows an opposite seasonal 

pattern: peaking in the winter, non-existent in the summer, and much less present in the shoulder 

months.  These two categories also exhibit predictable hourly patterns in usage, but these are not 

as distinct from each other as the seasonal patterns, since both tend to be much higher in the 

daytime.  The third category, which includes all other household appliances, collectively tends to 

exhibit less pronounced swings in usage from month to month, although a seasonal pattern is still 



apparent.  (Electricity usage for lighting, as an example, tends to be higher in the winter than in 

the summer, when residential customers are spending more time indoors, and there are fewer 

hours of daylight than in the summer.)  There is also an hourly and daily pattern that corresponds 

to increased electricity usage of household appliances when people are at home in the evenings 

and on weekends.   

 

It is not unreasonable to expect that these categories, with clearly distinct patterns of 

usage, will also exhibit different elasticities, and that these differential responses to price and 

income will have distinct impacts on both the level and shape of electricity usage.  But 

estimating different elasticities for different applications would be a challenging task, since all of 

these applications are receiving electricity through the same meter, and therefore cannot be 

readily modeled separately.  Electricity usage from space-heating and space-cooling can be 

modeled by including variables for heating degree-days (HDD) and cooling degree-days (CDD), 

respectively, which will help to separate direct effects of weather upon usage from other 

influences, such as pricing.  But the differential impacts of pricing and income upon space-

heating vs. space-cooling vs. non-weather applications might require an impractical amount of 

modeling sophistication.  A more suitable approach might be to simply have multiple models 

corresponding to different seasons of the year (e.g., summer, winter, and shoulder months) and 

perhaps even distinct models within these seasons for weekdays and weekends.   

 

The Problem with Elasticity, Part III: Elastic to . . . What? 

 

There is a third problem with price elasticity as it is measured and applied in the 

electricity industry, and this stems from the fundamental question of exactly what “price” 

customers are responding to.  When a consumer purchases gasoline, the price that will be paid is 

displayed predominantly on the pump.  Similarly, items available for purchase in stores generally 

have their prices listed either on the items themselves or nearby on the shelves.  In these cases, it 

is very clear what customers are responding to, but in the case of electricity, it is not so clear how 

customers are using price information to affect their usage behavior.  Is their behavior solely 

influenced by the magnitude of the monthly bill that they receive?  Do they look at their bill at 

all, to determine how it was calculated, or do they merely note the total amount when they pay 

it?  Complicating this even further is the fact that electricity rates are rarely if ever simply 

charges per unit of product delivered, but a combination of fixed and per-unit charges.  If 

customers are inspecting their bills, then how are the different billing components – the fixed 

monthly charge, the per-kilowatt-hour energy charge, and the demand charge (if one is included) 

affecting their behavior?  The answer to this question will – or should – have a critical impact on 

rate design. 

 

Do Consumers Respond to Marginal Price or to Average Price (i.e., Their Bill)? 

 

One of the most interesting recent studies that has examined the question of what 

electricity consumers are actually responding to is the one performed by Koichiro Ito of Boston 

University and summarized in his paper “Do Consumers Respond to Marginal or Average Price?  

Evidence from Nonlinear Electricity Pricing” (2014).  Ito begins the paper by referencing several 

empirical studies that have challenged the basic economic idea that firms and consumers 

optimize their behavior by responding to marginal prices.  Consumers do not often have ready 



access to information about marginal prices, and, at a more fundamental level, often do not 

understand the concept of nonlinear pricing systems.  Ito identifies two alternative drivers: 

expected marginal price, which would be derived from general knowledge about the pricing 

structure of the product, and average price, which would be used when the pricing structure of 

the product is so complex that a consumer finds it impractical to try to comprehend it.  Each of 

these response behaviors (i.e., to marginal price, expected marginal price, or average price) 

would exhibit a distinct usage pattern after a price change occurred, and therefore an empirical 

examination of actual usage patterns should reveal which of the behaviors is occurring. 

 

Ito found an ideal opportunity to study the response of electricity consumers to price 

changes in Orange County, California, where the service territories of two electric utilities, 

Southern California Edison (SCE) and San Diego Gas & Electric (SDG&E), border one another, 

and do so in a way that arbitrarily bisects the area, leaving two areas that have very similar 

demographic and electricity usage characteristics.  SCE and SDG&E have offered distinctly 

different rate designs to their respective customers in this county, and during the time period 

from 1999 to 2009 rate designs for both utilities changed significantly, and in significantly 

different ways, particularly during the California electricity crisis in 2000 and 2001.  For 

example, when wholesale electricity prices spiked in 2000, SDG&E passed this increase on to its 

customers immediately, while SCE maintained prices at 1999 levels until the end of the year.  

Both utilities eventually introduced additional price tiers after the onset of the crisis, but at 

different times, and at price levels that did not parallel one another.  Hence, not only were the 

marginal prices offered by each utility different, but average prices were not the same, either.  

(This was due not only to timing differences in rate increases and adjustments, but also to the 

fact that the two utilities had different generation mixes and infrastructure costs.) 

 

While Ito tested a variety of lags for prices, the most illuminating analyses consisted of 

his comparative evaluation of the impacts of marginal price, average price, and expected 

marginal price upon electricity demand.  He conducted two sets of these analyses, the first 

comparing marginal price effects to average price effects, and the second comparing expected 

marginal price effects to average price effects.  The first set of analyses consisted of six 

alternative linear regression models, with the first including only the marginal price variable, the 

second including only the average price variable, the third including both, and the other three 

essentially replicating these first three but with one-period lags of all of the price variables.  The 

second set of analyses consisted of four alternative equations, with the first including only the 

expected marginal price, the second including both the expected marginal price and the average 

price, and the other two replicating these with one-period lags of the price variables.  In all cases, 

the sample period covered the time period from January 1999 to December 2007. 

 

In the comparisons of marginal price effects versus average price effects, it was the 

variable corresponding to a one-period lag of the average price which proved to be the most 

statistically significant.  This variable corresponds most closely with the phenomenon of 

customers reacting mainly to their monthly bill, which reports prices after the fact.  In the model 

which included both marginal and average price variables, the marginal price variable was 

always statistically insignificant and had the wrong sign (i.e., positive, suggesting that an 

increase in marginal price would lead to higher usage).  The comparisons of expected marginal 

price effects with average price effects produced virtually identical results, including that of the 



expected marginal price variable being statistically insignificant and with the wrong sign when 

included with the average price variable in a single model. 

 

The Ito study confirms what is generally believed about the price-responsive behavior of 

electricity consumers: to the extent that they respond to changes in electricity prices at all, it is to 

changes in their bills, rather than their hourly and/or marginal rates, even when these rates 

exhibit significant variability.  But pricing programs have been implemented to create incentives 

for greater sensitivity to hourly prices.  Wolak (2011) investigated three variants of these which 

were implemented in Washington, D.C. in 2008 as part of a pilot program called PowerCentsDC: 

straight hourly pricing (HP), critical peak pricing (CPP), and critical peak pricing with a rebate 

(CPR).  Customers on the hourly pricing program were notified a day in advance if prices were 

going to be “high”.  Similarly, CPP and CPR customers were notified if the next day was going 

to be a critical peak pricing day, during which the standard hourly electricity rate was replaced 

with a significantly higher rate.  CPP customers would simply be charged that higher rate, but 

CPR customers would continue to be charged the standard fixed utility rate, and receive a rebate 

roughly equivalent to the difference between the CPP rate and standard utility rate, multiplied by 

a measured reduction in usage below some reference level.  The program randomly assigned 857 

customers to these programs and monitored their usage, and observed an additional 388 

customers not on these programs for comparison.  Customers were distinguished as either regular 

(R) or all-electric (AE) in order to compare differences in impacts of the programs upon these 

two classes. 

  

Wolak conducted a statistical analysis of the behavioral responses of customers under 

each of the programs.  He found that demand response to all three programs was statistically 

significant for both regular and all-electric customers.  For both classes, the program which 

produced the most significant response was critical peak pricing, and for regular customers, the 

measured magnitude of the response for this program was over twice as high as for the other two 

programs.  For regular customers, the program which had the second highest significant impact 

was critical peak pricing with a rebate.  However, for all-electric customers, hourly pricing had 

the second most significant impact.  Collectively, the responses of all-electric customers to each 

of these programs was higher than the corresponding response rate among regular customers, and 

much higher in critical peak pricing and hourly programs. 

 

 The results of Ito’s analyses clearly suggest that the typical residential electricity 

consumer will not respond to marginal prices – actual or expected – while the Wolak study 

indicates that such a response can be induced with proper program design.  Ahmad Faruqui and 

Sanem Sergici of the Brattle Group conducted a meta-analysis (2013) of studies analyzing the 

impact of dynamic pricing programs throughout the world, and found tangible evidence of the 

impact on peak load reduction by both time-of-use pricing programs and dynamic pricing 

programs (e.g., critical peak pricing, variable peak pricing).  As would be expected, the studies 

collectively display a pattern of peak reduction behavior which increases in proportion to the 

ratio of peak to off-peak prices, although the increase in this behavior diminishes as the 

proportion increases.  There is also a tendency for the programs to be more effective when 

technology is present which automates or enhances the capacity of consumers to respond to price 

changes. 

 



What is the Impact of Demand Charges? 

 

The question of how consumers respond to electricity prices is further complicated by the 

fact that it often does not merely involve whether consumers respond to average or marginal 

prices (or expected marginal prices), but whether they also respond to demand charges in their 

rates.  A demand charge is calculated based upon a customer’s peak usage, and will rise or fall in 

tandem with increases or reductions in this peak usage.  A customer’s peak (and corresponding 

demand charge) could be reduced in one or both of two ways: 1) through a total decline in 

electricity usage – particularly at times when this usage peaked and/or 2) by shifting electricity 

consumption from peak periods to other times of the day.  While utilities have traditionally only 

included demand charges in their commercial and industrial customers’ rate designs, many of 

them have begun actively exploring the addition of a demand charge component to residential 

rate designs as well. 

 

Sanem Sergici of the Brattle Group addressed the issue of residential response to demand 

charges in a presentation made to the EUCI Residential Demand Charge Conference (2016).  She 

observed that there has been a limited amount of empirical research on consumer response to 

demand charges, citing three pilot projects that have examined this.  The range of the average 

observed reduction in peak consumption varied widely (from 5% to 29%), but the level of this 

reduction was influenced by several factors, including the magnitude of the demand charge itself, 

the magnitude of the per kilowatt-hour energy charge, and the existence and magnitude of a fixed 

charge.  Sergici also described a simulation that she conducted that measured the relative impact 

of time-of-use vs. demand charges in influencing the consumption of three distinct types of 

customers (“small but peaky”, “average”, and “large and less peaky”).  The results, as might be 

expected, suggested that the impact of demand charges is proportional to the “peakiness” of the 

customer type, which, while not surprising, is ironic, given that utilities have traditionally tended 

to include demand charges in those larger classes of customers that exhibit less “peaky” 

behavior, rather than smaller classes of customers, such as residential, which exhibit a much 

greater variability in hourly consumption behavior. 

 

The Two-Fold Objective of Rate Design 

 

Electricity rates are designed to fulfill two fundamental objectives: the effective recovery 

of allowed revenue requirements, and the shaping of electricity demand to more efficiently 

match it with available supply.  Knowledge of price elasticity enables a better attainment of both 

of these objectives.  Two cases will illustrate how this can be achieved, with the first 

corresponding to a more desirable rate design, and the second corresponding to a rate design that 

is more prevalent in the industry today. 

 

Ideal Case 

 

 Ideally, the structure of electricity rates would reflect the manner in which the underlying 

costs to be recovered have been incurred.  Cost causation can be grouped into three general 

categories: 

 



• Variable costs: These are the expenses that vary directly with consumption, such as fuel 

expenses and most operations and maintenance costs. 

• Capacity costs: These vary with total electricity demand, as the distribution and 

transmission system must be sized to meet the maximum level of electricity consumption 

that is being served. 

• Fixed costs: These correspond to those expenses that will be incurred independently of 

the actual level of electricity consumption and do not vary with the level of demand, and 

include such things as billing, customer service, metering, and overhead expenses. 

 

A rate structure which reflected these categories would include an energy (per kilowatt-hour) 

charge to recover variable costs, a demand (per kilowatt) charge to recover capacity costs, and a 

monthly customer charge to recover fixed costs. 

 

 The elasticity characteristics of each of these rate components would have different 

implications upon revenue recovery and the shape of customer electricity demand.  Changes in 

the energy charge, for example, which is generally adjusted regularly through cost adjustment 

factors between rate cases or even more frequently due to time-of-use pricing to reflect changing 

fuel and purchased electric power costs, will be of no consequence to total revenue requirements 

and earnings, since no revenue associated with this rate component contributes to net earnings.  

These changes will, however, have a potentially significant impact on customer load shapes, 

particularly if prices vary by season and/or by hour, and more so if programs exist to explicitly 

make customers more sensitive to these variations.  The demand charge component will be of 

relevance both to total revenue requirements and to load shaping, since revenue associated with 

investments in capacity have an earnings component (allowed return on equity) and since the 

demand charge by its very nature will create incentives for customers to “flatten” their demand.  

Finally, the fixed charge element, since it also corresponds to infrastructure investment, will have 

an earnings component, and so any impact that increases in this element has on total electricity 

usage will be significant.  However, it is doubtful whether changes in the fixed monthly 

customer charge will affect load shape, although this should probably be confirmed empirically. 

 

Practical Case 

 

 In the electricity industry, actual rate design does not often comport with the ideal case 

described above.  With residential customers in particular, the bulk of revenue requirements – 

including the earnings component – are recovered in the energy charge, with the remainder 

captured in a small, almost token, monthly customer charge, and demand charges are usually 

nonexistent.  But the fact that there is such a gulf between the ideal and the real does not negate 

the need to properly address the impacts of price elasticity on revenue recovery and load shape.  

The same challenges apply, and the same techniques for addressing them can be applied with 

existing rate designs. 

 

  



 In summary, the procedure would be as follows: 

 

1. Estimate the price elasticity of demand, and of consumption, for 

• the fixed charge component of rates, 

• the demand charge, and  

• the energy charge. 

 

2. Adjust revenue requirement projections stemming from a rate increase (or rate decrease) 

in the energy charge, fixed charge, and demand charge (if a demand charge is present). 

 

3. Adjust the demand forecast for changes in peak demand stemming from changes in the 

energy charge and the demand charge (if a demand charge is present). 

 

This procedure will ensure that requested rate increases take into account the impact of these 

increases on future revenue requirements, and will also provide a realistic projection of system 

capacity requirements after the increases occur. 

 

Conclusions 

 

The measurement of price elasticity in the electricity industry has always been an issue of 

controversy, both because of the wide diversity in measurements obtained, and because of 

diverse views on how it should be interpreted.  In this paper, it has been contended that the 

importance of price elasticity in determining future revenue requirements and in designing rates 

has been greatly underappreciated, and that more than proper measurement and interpretation of 

elasticity (which are significant challenges in their own right) is required: there must also be a 

proper application of elasticity to forecasting and rate design.  This paper, in addition to 

highlighting and clarifying the interpretation issues, has attempted to provide a guide to proper 

application, both under ideal and more practical circumstances.  It is hoped that it will also serve 

as a guide for future research, and that it will enlighten future discussions and debates about the 

role that price elasticity plays and should play in all rate-setting activities. 
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